Summary: | Em Portugal, desde a crise financeira, o número de Pequenas e Médias Empresas (PME) que entram em insolvência é bastante elevado e preocupante pelos impactos que causam na economia e na sociedade. Embora já tenham sido desenvolvidos diversos modelos preditivos das insolvências cujos preditores são, essencialmente, a informação financeira, este tema ainda é crítico nos dias de hoje, pelo que é de enorme relevância continuar a investigar e a criar modelos com maior precisão que os anteriores. Deste modo, e como as demonstrações financeiras das empresas nem sempre transparecem a realidade económico-financeira das mesmas, o presente estudo avalia o impacto das características do auditor e o conteúdo da sua opinião na predição das insolvências. Para tal, recorre-se a técnicas de análise de dados mais avançadas, nomeadamente text mining e árvores de decisão com o algoritmo CART de forma a analisar as Certificações Legais de Contas (CLC)/Relatórios de Auditoria Financeira Externa (RAFE), entre os anos de 2016 e 2020, de uma amostra de 2.040 empresas, 1.020 não insolventes e 1.020 insolventes. Os resultados obtidos permitem identificar uma relação entre as características do auditor e o conteúdo da sua opinião e a insolvência das empresas, prevendo-se uma Percentagem de Exemplos Corretamente Classificados (PECC) de 93%. O principal contributo empírico desta investigação é gerar melhor conhecimento sobre a inviabilidade das empresas através da atividade de Auditoria Financeira Externa (AFE), recorrendo-se a novas técnicas nunca antes utilizadas em modelos preditivos.
|