Summary: | We consider a class of nearest-neighbor weakly asymmetric mass conservative particle systems evolving on $\mathbb{Z}$, which includes zero-range and types of exclusion processes, starting from a perturbation of a stationary state. When the weak asymmetry is of order $O(n^\gamma)$ for $1/2<\gamma\leq 1$, we show that the scaling limit of the fluctuation field, as seen across process characteristics, is a generalized Ornstein-Uhlenbeck process. However, at the critical weak asymmetry when $\gamma = 1/2$, we show that all limit points solve a martingale problem which may be interpreted in terms of a stochastic Burgers equation derived from taking the gradient of the KPZ equation. The proofs make use of a sharp `Boltzmann-Gibbs' estimate which improves on earlier bounds.
|