On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices
Let $G$ be a simple undirected graph. Let $0\leq \alpha \leq 1$. Let $$A_{\alpha}(G)= \alpha D(G) + (1-\alpha) A(G)$$ where $D(G)$ and $A(G)$ are the diagonal matrix of the vertex degrees of $G$ and the adjacency matrix of $G$, respectively. Let $p(G)>0$ and $q(G)$ be the number of pendant vertic...
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2018
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/23003 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/23003 |