Local existence and uniqueness for a fractional SIRS model with Mittag-Leffler law

In this paper, we study an epidemic model with Atangana-Baleanu-Caputo (ABC) fractional derivative. We obtain a special solution using an iterative scheme via Laplace transformation. Uniqueness and existence of a solution using the Banach fixed point theorem are studied. A detailed analysis of the s...

ver descrição completa

Detalhes bibliográficos
Autor principal: Sidi Ammi, Moulay Rchid (author)
Outros Autores: Tahiri, Mostafa (author), Torres, Delfim F. M. (author)
Formato: article
Idioma:eng
Publicado em: 2021
Assuntos:
Texto completo:http://hdl.handle.net/10773/31934
País:Portugal
Oai:oai:ria.ua.pt:10773/31934
Descrição
Resumo:In this paper, we study an epidemic model with Atangana-Baleanu-Caputo (ABC) fractional derivative. We obtain a special solution using an iterative scheme via Laplace transformation. Uniqueness and existence of a solution using the Banach fixed point theorem are studied. A detailed analysis of the stability of the special solution is presented. Finally, our generalized model in the ABC fractional derivative sense is solved numerically by the Adams-Bashforth-Moulton method.