Orbit Representations from Linear mod 1 Transformations

We show that every point x0 2 [0; 1] carries a representation of a C -algebra that encodes the orbit structure of the linear mod 1 interval map f ; (x) = x + . Such C -algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map f ; . Then we prove t...

ver descrição completa

Detalhes bibliográficos
Autor principal: Ramos, Carlos Correia (author)
Outros Autores: Martins, Nuno (author), Pinto, Paulo R. (author)
Formato: article
Idioma:eng
Publicado em: 2013
Assuntos:
Texto completo:http://hdl.handle.net/10174/7927
País:Portugal
Oai:oai:dspace.uevora.pt:10174/7927
Descrição
Resumo:We show that every point x0 2 [0; 1] carries a representation of a C -algebra that encodes the orbit structure of the linear mod 1 interval map f ; (x) = x + . Such C -algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map f ; . Then we prove that such representation is irreducible. Moreover two such of representations are unitarily equivalent if and only if the points belong to the same generalized orbit, for every 2 [0; 1[ and 1.