Biodegradation and Metabolic Pathway of 17 beta-Estradiol by Rhodococcus sp. ED55

Endocrine disrupting compounds (EDCs) in the environment are considered a motif of concern, due to the widespread occurrence and potential adverse ecological and human health effects. The natural estrogen, 17 beta-estradiol (E2), is frequently detected in receiving water bodies after not being effic...

ver descrição completa

Detalhes bibliográficos
Autor principal: Moreira, Irina S. (author)
Outros Autores: Murgolo, Sapia (author), Mascolo, Giuseppe (author), Castro, Paula M. L. (author)
Formato: article
Idioma:eng
Publicado em: 2022
Assuntos:
Texto completo:http://hdl.handle.net/10400.14/37901
País:Portugal
Oai:oai:repositorio.ucp.pt:10400.14/37901
Descrição
Resumo:Endocrine disrupting compounds (EDCs) in the environment are considered a motif of concern, due to the widespread occurrence and potential adverse ecological and human health effects. The natural estrogen, 17 beta-estradiol (E2), is frequently detected in receiving water bodies after not being efficiently removed in conventional wastewater treatment plants (WWTPs), promoting a negative impact for both the aquatic ecosystem and human health. In this study, the biodegradation of E2 by Rhodococcus sp. ED55, a bacterial strain isolated from sediments of a discharge point of WWTP in Coloane, Macau, was investigated. Rhodococcus sp. ED55 was able to completely degrade 5 mg/L of E2 in 4 h in a synthetic medium. A similar degradation pattern was observed when the bacterial strain was used in wastewater collected from a WWTP, where a significant improvement in the degradation of the compound occurred. The detection and identification of 17 metabolites was achieved by means of UPLC/ESI/HRMS, which proposed a degradation pathway of E2. The acute test with luminescent marine bacterium Aliivibrio fischeri revealed the elimination of the toxicity of the treated effluent and the standardized yeast estrogenic (S-YES) assay with the recombinant strain of Saccharomyces cerevisiae revealed a decrease in the estrogenic activity of wastewater samples after biodegradation.