Summary: | The Fisher’s equation is established combining the Fick’s law for the flux and the mass conservation law. Assuming that the reaction term depends on the solution at some past time, a delay parameter is introduced and the delay Fisher’s equation is obtained. Modifying the Fick’s law for the flux considering a temporal memory term, integro-differential equations of Volterra type were introduced in the literature. In these paper we study reaction-diffusion equations obtained combining the two modifications: a temporal memory term in the flux and a delay in the reaction term. The delay integro-differential equations, also known as delay Volterra integrodifferential equations, are studied in the theoretical view point: stability estimates are established. Numerical methods which mimic the theoretical models are studied. Numerical experiments illustrating the established results are also included.
|