Bayesian prediction in threshold autoregressive models with exponential white noise

In this paper, we develop a Bayesian analysis of a threshold antoregressive model with exponential noise. An approximate Bayes methodology, which is introduced here; and the Gibbs sampler are used to compute marginal posterior densities for the parameters of the model; including the threshold parame...

ver descrição completa

Detalhes bibliográficos
Autor principal: Pereira, IMS (author)
Outros Autores: Amaral-Turkman, MA (author)
Formato: article
Idioma:eng
Publicado em: 2011
Assuntos:
Texto completo:http://hdl.handle.net/10773/4433
País:Portugal
Oai:oai:ria.ua.pt:10773/4433
Descrição
Resumo:In this paper, we develop a Bayesian analysis of a threshold antoregressive model with exponential noise. An approximate Bayes methodology, which is introduced here; and the Gibbs sampler are used to compute marginal posterior densities for the parameters of the model; including the threshold parameter, and to compute one-step-ahead predictive density functions. The proposed methodology is illustrated with a simulation study and a real example.