Summary: | Computational strain optimisation methods (CSOMs) have been successfully used to exploit genome-scale metabolic models, yielding strategies useful for allowing compound overproduction in metabolic cell factories. Minimal cut sets are particularly interesting since their definition allows searching for intervention strategies that impose strong growth-coupling phenotypes, and are not subject to optimality bias when compared with simulation-based CSOMs. However, since both types of methods have different underlying principles, they also imply different ways to formulate metabolic engineering problems, posing an obstacle when comparing their outputs.
|