Resumo: | A systematic review of peer reviewed articles has shown that the main cause for wrist arthroplasty revision is carpal and radial prosthetic loosening and instability. To improve arthroplasty outcomes, successive generations of implants have been developed over time. The problem with the current generation of implants is the lack of long-term outcomes data. The aim of the present work was to test the hypothesis that the current generation Maestro WRS implant has a stress, strain and stability behaviour which may be associated with a reduced risk of long-term radial component loosening. This study was performed using synthetic radii to experimentally predict the cortex strain behaviour and implant stability considering different load conditions for both intact and implanted conditions. Finite element models were developed to assess the structural behaviour of cancellous-bone and bone-cement, these models were validated against experimentally measured cortex strains. Measured cortex strains showed a significant reduction between intact and implanted states. Cancellous bone adjacent to the radial body component suffers a two to threefold strain reduction, comparing with the intact condition, while along the radial stem, in the axial direction, a strain increase was observed. It is concluded that the use of contemporary Maestro WRS implant changes the biomechanical behaviour of the radius and is associated with a potential risk of bone resorption by stress-shielding in the distal radius region for wrist loads in the range of daily activities
|