Optimization of Aggregators Energy Resources considering Local Markets and Electric Vehicle Penetration

O sector elétrico tem vindo a evoluir ao longo do tempo. Esta situação deve-se ao facto de surgirem novas metodologias para lidarem com a elevada penetração dos recursos energéticos distribuídos (RED), principalmente veículos elétricos (VEs). Neste caso, a gestão dos recursos energéticos tornou-se m...

Full description

Bibliographic Details
Main Author: Almeida, José Rafael Guedes de (author)
Format: masterThesis
Language:eng
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/10400.22/19550
Country:Portugal
Oai:oai:recipp.ipp.pt:10400.22/19550
Description
Summary:O sector elétrico tem vindo a evoluir ao longo do tempo. Esta situação deve-se ao facto de surgirem novas metodologias para lidarem com a elevada penetração dos recursos energéticos distribuídos (RED), principalmente veículos elétricos (VEs). Neste caso, a gestão dos recursos energéticos tornou-se mais proeminente devido aos avanços tecnológicos que estão a ocorrer, principalmente no contexto das redes inteligentes. Este facto torna-se importante, devido à incerteza decorrente deste tipo de recursos. Para resolver problemas que envolvem variabilidade, os métodos baseados na inteligência computacional estão a se tornar os mais adequados devido à sua fácil implementação e baixo esforço computacional, mais precisamente para o caso tratado na tese, algoritmos de computação evolucionária (CE). Este tipo de algoritmo tenta imitar o comportamento observado na natureza. Ao contrário dos métodos determinísticos, a CEé tolerante à incerteza; ou seja, é adequado para resolver problemas relacionados com os sistemas energéticos. Estes sistemas são geralmente de grandes dimensões, com um número crescente de variáveis e restrições. Aqui a IC permite obter uma solução quase ótima em tempo computacional aceitável com baixos requisitos de memória. O principal objetivo deste trabalho foi propor um modelo para a programação dos recursos energéticos dos recursos dedicados para o contexto intradiário, para a hora seguinte, partindo inicialmente da programação feita para o dia seguinte, ou seja, 24 horas para o dia seguinte. Esta programação é feita por cada agregador (no total cinco) através de meta-heurísticas, com o objetivo de minimizar os custos ou maximizar os lucros. Estes agregadores estão inseridos numa cidade inteligente com uma rede de distribuição de 13 barramentos com elevada penetração de RED, principalmente energia renovável e VEs (2000 VEs são considerados nas simulações). Para modelar a incerteza associada ao RED e aos preços de mercado, vários cenários são gerados através da simulação de Monte Carlo usando as funções de distribuição de probabilidade de erros de previsão, neste caso a função de distribuição normal para o dia seguinte. No que toca à incerteza no modelo para a hora seguinte, múltiplos cenários são gerados a partir do cenário com maior probabilidade do dia seguinte. Neste trabalho, os mercados locais de eletricidade são também utilizados como estratégia para satisfazer a equação do balanço energético onde os agregadores vão para vender o excesso de energia ou comprar para satisfazer o consumo. Múltiplas metaheurísticas de última geração são usadas para fazer este escalonamento, nomeadamente Differential Evolution (DE), Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with Estimation of Distribution Algorithm (DEEDA), Cellular Univariate Marginal Distribution Algorithm with Normal-Cauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring Cellular Encode-Decode UMDA (HC2RCEDUMDA). Os resultados mostram que o modelo proposto é eficaz para os múltiplos agregadores com variações de custo na sua maioria abaixo dos 5% em relação ao dia seguinte, exceto para o agregador e de VEs. É também aplicado um teste Wilcoxon para comparar o desempenho do algoritmo CUMDANCauchy++ com as restantes meta-heurísticas. O CUMDANCauchy++ mostra resultados competitivos tendo melhor performance que todos os algoritmos para todos os agregadores exceto o DEEDA que apresenta resultados semelhantes. Uma estratégia de aversão ao risco é implementada para um agregador no contexto do dia seguinte para se obter uma solução mais segura e robusta. Os resultados mostram um aumento de quase 4% no investimento, mas uma redução de até 14% para o custo dos piores cenários.