Resumo: | Os materiais multiferróicos possuem simultaneamente pelo menos duas das três propriedades ferróicas: i) ferroelectricidade; ii) ferromagnetismo; e / ou iii) ferroelasticidade. Estes materiais têm despertado considerável interesse na indústria microeletrónica devido ao seu potencial para serem usados em dispositivos de armazenamento de informação com elevada capacidade e eficiência energética. A constante procura pela redução do tamanho e aumento da funcionalidade dos dispositivos, imposta pela Lei de Moore, exige materiais ferróicos, na forma de filmes finos e multifuncionalidade. Contudo, à medida que a espessura dos filmes diminui, as propriedades ferróicas ficam comprometidas em virtude de constrangimentos provocados pelo substrato ou outros efeitos. Neste contexto, esta tese estuda a possibilidade de utilizar a porosidade em filmes funcionais para criar sistemas compósitos multifuncionais. Assim, desenvolveram-se estratégias para a preparação de filmes de ferroeléctricos, ferromagnéticos e multiferroícos com porosidade uniforme e ordenada. O efeito dessa porosidade foi avaliado nas propriedades físicas locais e macroscópicas. Foram estudados óxidos multimetálicos com estrutura de perovisquite ou de espinela por serem promissores para aplicação em sensores; atuadores; condensadores; memórias; etc. Escolheu-se uma metodologia química em que os filmes são depositados por técnica de mergulho em soluções sol-gel contendo um copolímero em bloco que se organiza espontaneamente conjuntamente com os precursores durante o processo de evaporação. PbTiO3 foi a composição inicialmente escolhida para entender o efeito da nanoporosidade nas propriedades eléctricas locais por ser o material piezoeléctrico protótipo que possui o mais alto coeficiente piezoeléctrico conhecido. Assim, foram preparados filmes nanoporosos e densos de PbTiO3 com espessura de cerca de 100 nm e diâmetro de poro na ordem dos 50 nm. A presença da nanoporosidade contribui para a cristalização precoce da fase cristalina por aumento local da temperatura durante a decomposição do copolímero e / ou por funcionarem como núcleos de cristalização. Consequentemente, os fimes porosos exibem melhores coeficientes piezoeléctricos e baixo campo coercivo, sendo mais fácil inverter a direção da polarização por efeito do campo elétrico. Sendo a porosidade um meio para atingir propriedades melhoradas, esta pode funcionar como uma ferramenta para ajustar as propriedades ferroeléctricas à aplicação desejada. Todos os resultados de PFM foram previstos através de modelação teórica usando o modelo de elementos finitos. Foi também investigada a preparação de filmes porosos de titanado de bário enquanto protótipo de um ferroeléctrico sem chumbo. Neste contexto, foi avaliado o efeito de vários parâmetros, tais como: i) o aquecimento da solução de precursores; ii) adição de precursores inorgânicos / solventes orgânicos; e iii) envelhecimento da solução inicial, na estrutura final dos filmes.Verificou-se que o uso de uma solução fresca de precursores sem qualquer ciclo de aquecimento contribuía para uma melhor organização dos filmes porosos de BaTiO3. Verificou-se também que o tamanho dos blocos num copolímero à base de poliestireno e poli(óxido de etileno) era preponderante para a ordem e microestrutura cristalina dos filmes finais. Copolímeros em bloco com cadeias de bloco mais longas são preferíveis para obter uma estrutura ordenada e aparentemente desempenham um papel na cristalização precoce da fase ferroeléctrica tetragonal, contribuindo para uma melhoria da resposta piezoeléctrica. Em analogia com o PbTiO3, os resultados indicam que nos filmes nanoporosos de BaTiO3, a cristalização ocorre a temperaturas mais baixas do que nos filmes densos. Utilizou-se a deposição electroquímica para inserir nanopartículas metálicas de cobalto dentro dos poros dos filmes de BaTiO3. O carácter multiferróico dos filmes foi constatado através da avaliação nanoscópica das propriedades elétricas e pela medida das propriedades magnéticas macroscópicas à temperatura ambiente. Verificaram-se as dificuldades de conseguir um preenchimento uniforme dos poros e de otimizar a interface entre as duas fases ferróicas. Assim com vista a tentar ultrapassar estas dificuldades, prepararam-se filmes mais finos e em que a porosidade estivesse devidamente organizada, com poros perpendiculares à superfície. Conceberam-se filmes nanotexturados ordenados de óxidos multimetálicos com propriedades ferroelétricas, ferromagnéticas e multiferróicas com espessuras e texturas de dimensão inferior a 100 nm. As composições escolhidas foram PbTiO3, CoFe2O4 e BiFeO3. Os filmes finos porosos nanotexturados PbTiO3 apresentaram a fase cristalográfica tetragonal mesmo em espessuras de filme de 22 nm. Os filmes finos de CoFe2O4 apresentaram uma orientação preferencial no plano e elevadas magnetizações de saturação. Deduziu-se que os filmes teriam uma impureza ferromagnética compatível com uma liga metálica rica em platina. A presença desta impureza não só melhora o desempenho magnético dos filmes mas também fornece uma forte evidência para a potencial aplicabilidade dos filmes de CoFe2O4 como catalisadores para a oxidação de hidrocarbonetos através do mecanismo de Mars-Van-Krevelen. Foram também preparados filmes finos porosos nanotexturados de BiFeO3, com 66 nm de espessura e tamanho médio de diâmetro de 100 nm. Verificou-se o caráter multiferróico destes filmes e mais uma vez a melhoria clara das propriedades eléctricas locais induzida pela porosidade. A estrutura porosa também tem um efeito positivo nas propriedades magnéticas no plano, mostrando uma componente ferromagnética 50% maior que a medida em filmes densos. Verificou-se também que porosidade dos filmes de BiFeO3 pode ter interesse para aplicações fotocatalíticas, conjugando reduzido valor do hiato óptico direto (2.58 eV) com relativamente elevada área porosa (ca. 57 %). Para testar a aplicabilidade dos filmes nanotexturados na construção de um filme multiferróico compósito, uma matriz porosas ferroelétricos (BaTiO3) foi funcionalizada por preenchimento dos poros com nanopartículas ferromagnéticas de níquel. A estratégia de funcionalização dos poros foi a deposição por arrastamento com CO2 supercrítico, seguida de redução da espécie metálica a 250 ºC ativada por etanol. Pequenas nanopartículas de níquel com cerca de 21 nm foram depositadas dentro dos poros da matriz porosa, tendo-se verificado as propriedades estruturais e magnéticas do compósito. Esta tese, provou a adequação desta metodologia química de baixo custo na concepção de materiais multifuncionais, criando novas perspectivas para a indústria da microeletrónica na sua abordagem contínua de redução de tamanho e custo, enquanto aumenta a complexidade de funcionamento.
|