On regular-stable graphs

We introduce graphs G, with at least one maximum independent set of vertices, I, such that for all v in V(G)\I, the number of vertices in NG(v)∩I is constant. When this number of vertices is equal to λ we say that I has the λ-property and that G is λ-regular-stable. Furthermore we extend the study o...

ver descrição completa

Detalhes bibliográficos
Autor principal: Barbosa, R. (author)
Outros Autores: Cardoso, D.M. (author)
Formato: article
Idioma:eng
Publicado em: 1000
Assuntos:
Texto completo:http://hdl.handle.net/10773/4435
País:Portugal
Oai:oai:ria.ua.pt:10773/4435
Descrição
Resumo:We introduce graphs G, with at least one maximum independent set of vertices, I, such that for all v in V(G)\I, the number of vertices in NG(v)∩I is constant. When this number of vertices is equal to λ we say that I has the λ-property and that G is λ-regular-stable. Furthermore we extend the study of this property to the well-covered graphs (that is, graphs where all maximal independent sets of vertices have the same cardinality). In this study we consider well-covered graphs for which all maximal independent sets of vertices have the λ-property, herein called well-covered λ-regular-stable graphs.