Behavioral equivalence of hidden k-logics: an abstract algebraic approach
This work advances a research agenda which has as its main aim the application of Abstract Algebraic Logic (AAL) methods and tools to the specification and verification of software systems. It uses a generalization of the notion of an abstract deductive system to handle multi-sorted deductive systems...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
2016
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/15706 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/15706 |
Resumo: | This work advances a research agenda which has as its main aim the application of Abstract Algebraic Logic (AAL) methods and tools to the specification and verification of software systems. It uses a generalization of the notion of an abstract deductive system to handle multi-sorted deductive systems which differentiate visible and hidden sorts. Two main results of the paper are obtained by generalizing properties of the Leibniz congruence — the central notion in AAL. In this paper we discuss a question we posed in [1] about the relationship between the behavioral equivalences of equivalent hidden logics. We also present a necessary and sufficient intrinsic condition for two hidden logics to be equivalent. |
---|