Developing and evaluating clopencl applications for heterogeneous clusters

In the last few years, the computing systems processing capabilities have increased significantly, changing from single-core to multi-core and even many-core systems. Accompanying this evolution, local networks have also become faster, with multi-gigabit technologies like Infiniband, Myrinet and 10G...

Full description

Bibliographic Details
Main Author: Ribeiro, Tiago Filipe Rodrigues (author)
Format: masterThesis
Language:eng
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10198/7948
Country:Portugal
Oai:oai:bibliotecadigital.ipb.pt:10198/7948
Description
Summary:In the last few years, the computing systems processing capabilities have increased significantly, changing from single-core to multi-core and even many-core systems. Accompanying this evolution, local networks have also become faster, with multi-gigabit technologies like Infiniband, Myrinet and 10G Ethernet. Parallel/distributed programming tools and standards, like POSIX Threads, OpenMP and MPI, have helped to explore these technologies and have been frequently combined, giving rise to Hybrid Programming Models. Recently, co-processors like GPUs and FPGAs, started to be used as accelerators, requiring specialized frameworks (like CUDA for NVIDIA GPUs). Presented with so much heterogeneity, the industry formulated the OpenCL specification, as a standard to explore heterogeneous systems. However, in the context of cluster computing, one problem surfaces: OpenCL only enables a developer to use the devices that are present in the local machine. With many processor devices scattered across cluster nodes (CPUs, GPUs and other co-processors), it then became important to enable software developers to take full advantage of the full cluster device set. This dissertation demonstrates and evaluates an OpenCL extension, named clOpenCL, which supports the simple deployment and efficient running of OpenCL-based parallel applications that may span several cluster nodes, thus expanding the original single-node OpenCL model. The main contributions are that clOpenCL i) offers a transparent approach to the porting of traditional OpenCL applications to cluster environments and ii) provides significant performance increases over classical (non-)hybrid parallel approaches. Nos últimos anos, a capacidade de processamento dos sistemas de computação aumentou significativamente, passando de CPUs com um núcleo para CPUs multi-núcleo. Acompanhando esta evolução, as redes locais também se tornaram mais rápidas, com tecnologias multi-gigabit como a Infiniband, Myrinet e 10G Ethernet. Ferramentas e standards paralelos/distribuídos, como POSIX Threads, OpenMP e MPI, ajudaram a explorar esses sistemas, e têm sido frequentemente combinados dando origem a Modelos de Programação Híbrida. Mais recentemente, co-processadores como GPUs e FPGAs, começaram a ser utilizados como aceleradores, exigindo frameworks especializadas (como o CUDA para GPUs NVIDIA). Deparada com tanta heterogeneidade, a indústria formulou a especificação OpenCL, como sendo um standard para exploração de sistemas heterogéneos. No entanto, no contexto da computação em cluster, um problema surge: o OpenCL só permite ao desenvolvedor utilizar dispositivos presentes na máquina local. Com tantos dispositivos de processamento espalhados pelos nós de um cluster (CPUs, GPUs e outros co-processadores), tornou-se assim importante habilitar os desenvolvedores de software, a tirarem o máximo proveito do conjunto total de dispositivos do cluster. Esta dissertação demonstra e avalia uma extensão OpenCL, chamada clOpenCL, que suporta a implementação simples e execução eficiente de aplicações paralelas baseadas em OpenCL que podem estender-se por vários nós do cluster, expandindo assim o modelo original de um único nó do OpenCL. As principais contribuições referem-se a que o clOpenCL i) oferece uma abordagem transparente à portabilidade de aplicações OpenCL tradicionais para ambientes cluster e ii) proporciona aumentos significativos de desempenho sobre abordagens paralelas clássicas (não) híbridas.