Approximate controllability of impulsive non-local non-linear fractional dynamical systems and optimal control

We establish existence, approximate controllability and optimal control of a class of impulsive non-local non-linear fractional dynamical systems in Banach spaces. We use fractional calculus, sectorial operators and Krasnoselskii fixed point theorems for the main results. Approximate controllability...

ver descrição completa

Detalhes bibliográficos
Autor principal: Guechi, Sarra (author)
Outros Autores: Debbouche, Amar (author), Torres, Delfim F. M. (author)
Formato: article
Idioma:eng
Publicado em: 2018
Assuntos:
Texto completo:http://hdl.handle.net/10773/24526
País:Portugal
Oai:oai:ria.ua.pt:10773/24526
Descrição
Resumo:We establish existence, approximate controllability and optimal control of a class of impulsive non-local non-linear fractional dynamical systems in Banach spaces. We use fractional calculus, sectorial operators and Krasnoselskii fixed point theorems for the main results. Approximate controllability results are discussed with respect to the inhomogeneous non-linear part. Moreover, we prove existence results of optimal pairs of corresponding fractional control systems with a Bolza cost functional.