Cartesian closed exact completions in topology

Using generalized enriched categories, in this paper we show that Rosický's proof of cartesian closedness of the exact completion of the category of topological spaces can be extended to a wide range of topological categories over Set, like metric spaces, approach spaces, ultrametric spaces, pr...

ver descrição completa

Detalhes bibliográficos
Autor principal: Clementino, Maria Manuel (author)
Outros Autores: Hofmann, Dirk (author), Ribeiro, Willian (author)
Formato: article
Idioma:eng
Publicado em: 2020
Assuntos:
Texto completo:http://hdl.handle.net/10316/89417
País:Portugal
Oai:oai:estudogeral.sib.uc.pt:10316/89417
Descrição
Resumo:Using generalized enriched categories, in this paper we show that Rosický's proof of cartesian closedness of the exact completion of the category of topological spaces can be extended to a wide range of topological categories over Set, like metric spaces, approach spaces, ultrametric spaces, probabilistic metric spaces, and bitopological spaces. In order to do so we prove a sufficient criterion for exponentiability of (T,V)-categories and show that, under suitable conditions, every injective (T,V)-category is exponentiable in (T,V)-Cat.