A characterization of the weighted version of McEliece-Rodemich-Rumsey-Schrijver number based on convex quadratic programming

For any graph $G,$ Luz and Schrijver \cite{LuzSchrijver} introduced a characterization of the Lov\'{a}sz number $\vartheta(G)$ based on convex quadratic programming. A similar characterization is now established for the weighted version of the number $\vartheta^{\prime}(G),$ independently intro...

ver descrição completa

Detalhes bibliográficos
Autor principal: Luz, Carlos J. (author)
Formato: article
Idioma:eng
Publicado em: 2018
Assuntos:
Texto completo:http://hdl.handle.net/10773/15344
País:Portugal
Oai:oai:ria.ua.pt:10773/15344
Descrição
Resumo:For any graph $G,$ Luz and Schrijver \cite{LuzSchrijver} introduced a characterization of the Lov\'{a}sz number $\vartheta(G)$ based on convex quadratic programming. A similar characterization is now established for the weighted version of the number $\vartheta^{\prime}(G),$ independently introduced by McEliece, Rodemich, and Rumsey \cite{McElieceetal} and Schrijver \cite{Schrijver1}. Also, a class of graphs for which the weighted version of $\vartheta^{\prime}(G)$ coincides with the weighted stability number is characterized.