On a regular Ψ-fractional Sturm-Liouville problem
In this short paper, we consider a $\psi$-fractional Sturm-Liouville eigenvalue problem by using left $\psi$-Caputo and right $\psi$-Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem.
Main Author: | |
---|---|
Other Authors: | , |
Format: | article |
Language: | eng |
Published: |
2022
|
Subjects: | |
Online Access: | http://hdl.handle.net/10400.8/7586 |
Country: | Portugal |
Oai: | oai:iconline.ipleiria.pt:10400.8/7586 |
Summary: | In this short paper, we consider a $\psi$-fractional Sturm-Liouville eigenvalue problem by using left $\psi$-Caputo and right $\psi$-Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. |
---|