Lexicographic polynomials of graphs and their spectra

For a (simple) graph $H$ and non-negative integers $c_0,c_1,\ldots,c_d$ ($c_d \neq 0$), $p(H)=\sum_{k=0}^d{c_k \cdot H^k}$ is the lexicographic polynomial in $H$ of degree $d$, where the sum of two graphs is their join and $c_k \cdot H^k$ is the join of $c_k$ copies of $H^k$. The graph $H^k$ is the...

Full description

Bibliographic Details
Main Author: Cardoso, Domingos M. (author)
Other Authors: Carvalho, Paula (author), Rama, Paula (author), Simic, Slobodan K. (author), Stanic, Zoran (author)
Format: article
Language:eng
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10773/18640
Country:Portugal
Oai:oai:ria.ua.pt:10773/18640
Description
Summary:For a (simple) graph $H$ and non-negative integers $c_0,c_1,\ldots,c_d$ ($c_d \neq 0$), $p(H)=\sum_{k=0}^d{c_k \cdot H^k}$ is the lexicographic polynomial in $H$ of degree $d$, where the sum of two graphs is their join and $c_k \cdot H^k$ is the join of $c_k$ copies of $H^k$. The graph $H^k$ is the $k$th power of $H$ with respect to the lexicographic product ($H^0 = K_1$). The spectrum (if $H$ is regular) and the Laplacian spectrum (in general case) of $p(H)$ are determined in terms of the spectrum of $H$ and~$c_k$'s. Constructions of infinite families of cospectral or integral graphs are also announced.