A one-class generative adversarial detection framework for multifunctional fault diagnoses

In this article, fault diagnosis is of great significance for system health maintenance. For real applications, diagnosis accuracy suffers from unbalanced data patterns, where normal data are usually abundant than anomaly ones, leading to tremendous diagnosis obstacles. Therefore, it is challenging...

ver descrição completa

Detalhes bibliográficos
Autor principal: Pu, Ziqiang (author)
Outros Autores: Cabrera, Diego (author), Bai, Yun (author), Li, Chuan (author)
Formato: article
Idioma:eng
Publicado em: 2022
Assuntos:
Texto completo:http://hdl.handle.net/10400.1/17847
País:Portugal
Oai:oai:sapientia.ualg.pt:10400.1/17847