Approximating the conformal map of elongated quadrilaterals by domain decomposition
Let $Q:=\{ \Omega;z_1,z_2,z_3,z_4\}$ be a quadrilateral consisting of a Jordan domain $\Omega$ and four points $z_1$, $z_2$, $z_3$, $z_4$ in counterclockwise order on $\partial \Omega$ and let $m(Q)$ be the conformal module of $Q$. Then, $Q$ is conformally equivalent to the rectangular quadrilateral...
Main Author: | |
---|---|
Other Authors: | , |
Format: | article |
Language: | eng |
Published: |
2001
|
Subjects: | |
Online Access: | http://hdl.handle.net/1822/1497 |
Country: | Portugal |
Oai: | oai:repositorium.sdum.uminho.pt:1822/1497 |