THE FROBENIUS PROBLEM FOR REPUNIT NUMERICAL SEMIGROUPS
A repunit is a number consisting of copies of the single digit 1. The set of repunits in base b is { bn 1 b 1 j n 2 Nnf0g } . A numerical semigroup S is a repunit numerical semigroup if there exist integers b 2 Nn f0; 1g and n 2 Nn f0g such that S = ⟨{ bn+i 1 b 1 j i 2 N }⟩ . In this work, we give f...
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2016
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10174/18118 |
País: | Portugal |
Oai: | oai:dspace.uevora.pt:10174/18118 |
Resumo: | A repunit is a number consisting of copies of the single digit 1. The set of repunits in base b is { bn 1 b 1 j n 2 Nnf0g } . A numerical semigroup S is a repunit numerical semigroup if there exist integers b 2 Nn f0; 1g and n 2 Nn f0g such that S = ⟨{ bn+i 1 b 1 j i 2 N }⟩ . In this work, we give formulas for the embedding dimension, the Frobenius number, the type and the genus for a repunit numerical semigroup. |
---|