Comparação de estratégias de geração de propostas no algoritmo Metropolis-Hastings para um modelo Poisson log-linear

Os métodos de Monte Carlo via Cadeias de Markov (MCMC) são uma classe de algoritmos de simulação que, no contexto de inferência Bayesiana, são comumente utilizados para gerar amostras de forma indireta de uma distribuição à posteriori da qual conhecemos apenas o núcleo. O algoritmo Metropolis-Hastin...

Full description

Bibliographic Details
Main Author: Estevão Batista do Prado (author)
Format: masterThesis
Language:por
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/1843/BUBD-A9ZGXY
Country:Brazil
Oai:oai:repositorio.ufmg.br:1843/BUBD-A9ZGXY
Description
Summary:Os métodos de Monte Carlo via Cadeias de Markov (MCMC) são uma classe de algoritmos de simulação que, no contexto de inferência Bayesiana, são comumente utilizados para gerar amostras de forma indireta de uma distribuição à posteriori da qual conhecemos apenas o núcleo. O algoritmo Metropolis-Hastings Random Walk e um algoritmoMCMC bastante utilizado no contexto Bayesiano, e que gera bons resultados de estimativas à posteriori se a matriz de covariâncias da distribuição de propostas é bem especificada. Em situações de alta dimensão, a escolha dessa matriz não é trivial. Este trabalho tem como objetivo principal comparar diferentes estratégias com relação ageração de valores candidatos no Metropolis-Hastings que se diferem, basicamente, pela especificação da matriz de covariâncias da distribuição de propostas. Algoritmos adaptativos e não-adaptativos serão considerados. A comparação dos algoritmos é feita emcenário de simulação e em uma análise de dados reais com o modelo Poisson log-linear em um problema para dados de contagem com estrutura longitudinal. Os critérios utilizados para avaliar a performance dos métodos foram: o tamanho efetivo da amostra, que é uma função da correlação das cadeia dos parâmetros, e a precisão das estimativas pontuais e intervalares a posteriori. De forma geral, os resultados numéricos mostram que os algoritmos estimam bem os parâmetros de interesse e se diferenciam quanto ao mixing das cadeias e ao tempo computacional. Destaque para as opções adaptativas AdaptiveMetropolis, Robust Adaptive Metropolis e Iterative Weighted Least Squares Metropolis.