Classificação computacional de animais para sistema de detecção nas rodovias

As colisões entre veículos e animais representam um sério problema na infraestrutura rodoviária. Para evitar tais acidentes, medidas mitigatórias têm sido aplicadas em diferentes regiões do mundo. Neste projeto é apresentado um sistema de detecção de animais em rodovias utilizando visão computaciona...

Full description

Bibliographic Details
Main Author: Sato, Denis (author)
Other Authors: Zanella, Adroaldo José (author), Costa, Ernane Xavier (author)
Format: article
Language:eng
Published: 2021
Subjects:
Online Access:https://doi.org/10.11606/issn.1678-4456.bjvras.2021.174951
Country:Brazil
Oai:oai:revistas.usp.br:article/174951
Description
Summary:As colisões entre veículos e animais representam um sério problema na infraestrutura rodoviária. Para evitar tais acidentes, medidas mitigatórias têm sido aplicadas em diferentes regiões do mundo. Neste projeto é apresentado um sistema de detecção de animais em rodovias utilizando visão computacional e algoritmo de aprendizado de máquina. Os modelos foram treinados para classificar dois grupos de animais: capivaras e equídeos. Foram utilizadas duas variantes da rede neural convolucional chamada Yolo (você só vê uma vez) — Yolov4 e Yolov4-tiny (versão mais leve da rede) — e o treinamento foi realizado a partir de modelos pré-treinados. Testes de detecção foram realizados em 147 imagens e os resultados de precisão obtidos foram de 84,87% e 79,87% para Yolov4 e Yolov4-tiny, respectivamente. O sistema proposto tem o potencial de melhorar a segurança rodoviária reduzindo ou prevenindo acidentes com animais.