Simulação e otimização termofluidodinâmica do circuito secundário de sistemas de aquecimento solar distrital

Os District Heating Systems (DHS) são amplamente utilizados em países ao norte da Europa, entretanto, em países em desenvolvimento esta tecnologia é ainda inovadora, notadamente para atender a demanda de água quente em habitações de interesse social. O escopo desse trabalho é motivado pelo aumento s...

ver descrição completa

Detalhes bibliográficos
Autor principal: Lucas Paglioni Pataro Faria (author)
Formato: doctoralThesis
Idioma:por
Publicado em: 2019
Assuntos:
Texto completo:http://hdl.handle.net/1843/BUOS-993K73
País:Brasil
Oai:oai:repositorio.ufmg.br:1843/BUOS-993K73
Descrição
Resumo:Os District Heating Systems (DHS) são amplamente utilizados em países ao norte da Europa, entretanto, em países em desenvolvimento esta tecnologia é ainda inovadora, notadamente para atender a demanda de água quente em habitações de interesse social. O escopo desse trabalho é motivado pelo aumento significativo do número de aquecedores solares instalados pelo poder público nos últimos anos em conjuntos habitacionais de população de baixa renda no Brasil e pelos desafios técnicos inerentes à implantação destes sistemas a partir do desenvolvimento de novos modelos de sustentabilidade da tecnologia. Inicialmente, realizou-se um levantamento de tipologias típicas de conjuntos habitacionais adotadas no Estado de Minas Gerais /Brasil para residências com área construída da ordem de 40m², 4 moradores e renda familiar de até 3 salários mínimos. Para o estabelecimento dos critérios mínimos a serem adotados na seleção do modelo de otimização, como por exemplo, minimização da recirculação requerida, do consumo de energia no bombeamento, do diâmetro dastubulações no circuito secundário e das perdas térmicas na rede de distribuição, desenvolveram-se rotinas computacionais que permitem a geração de uma matriz de resultados com a consolidação dos ganhos e a identificação das vantagens e desvantagens de cada configuração encontrada. A versão final do programa, desenvolvida nos softwares EES (Engineering Equation Solver) e Borland C++ Builder®, é fundamentada nas equações de energia, quantidade de movimento econservação de massa e tem por objetivos: Otimizar o imensionamento dos diâmetros das tubulações de alimentação e retorno (sub-ramais, ramais e prumadas de alimentação) garantindo desta forma o menor custo possível de instalação; Determinar as perdas de cargas e térmicas em cada trecho da rede prevendo a necessidade instalação de bombas hidráulicas de recirculação. Para a simulação inicial, modelou-se um DHS composto por 3 blocos, sendo o 1º e o 2º blocos compostos por quatro casas cada um e o 3º bloco com três casas. O método de otimização adotado é uma adaptação do Método do Gradiente juntamente com o Método Genético. Os resultados encontrados após a otimização mostram uma redução nos custos globais do sistema em torno de 19,6% em relação ao modelo não otimizado.