Método de mineração de dados para identificação de câncer de mama baseado na seleção de variáveis

Na maioria dos países, o câncer de mama entre as mulheres é predominante. Se diagnosticado precocemente, apresenta alta probabilidade de cura. Diversas abordagens baseadas em Estatística foram desenvolvidas para auxiliar na sua detecção precoce. Este artigo apresenta um método para a seleção de vari...

Full description

Bibliographic Details
Main Author: Holsbach,Nicole (author)
Other Authors: Fogliatto,Flávio Sanson (author), Anzanello,Michel Jose (author)
Format: article
Language:por
Published: 2014
Subjects:
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-81232014000401295
Country:Brazil
Oai:oai:scielo:S1413-81232014000401295
Description
Summary:Na maioria dos países, o câncer de mama entre as mulheres é predominante. Se diagnosticado precocemente, apresenta alta probabilidade de cura. Diversas abordagens baseadas em Estatística foram desenvolvidas para auxiliar na sua detecção precoce. Este artigo apresenta um método para a seleção de variáveis para classificação dos casos em duas classes de resultado, benigno ou maligno, baseado na análise citopatológica de amostras de célula da mama de pacientes. As variáveis são ordenadas de acordo com um novo índice de importância de variáveis que combina os pesos de importância da Análise de Componentes Principais e a variância explicada a partir de cada componente retido. Observações da amostra de treino são categorizadas em duas classes através das ferramentas k-vizinhos mais próximos e Análise Discriminante, seguida pela eliminação da variável com o menor índice de importância. Usa-se o subconjunto com a máxima acurácia para classificar as observações na amostra de teste. Aplicando ao Wisconsin Breast Cancer Database, o método proposto apresentou uma média de 97,77% de acurácia de classificação, retendo uma média de 5,8 variáveis.