A Curvatura de Gauss-Kronecker de hipersuperfícies mínimas em formas espaciais 4-dimensionais

In this work we study complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form Q4(c). We prove that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q4(c); c ≤ 0; whose Ricci curvature is bounded from below,is equa...

ver descrição completa

Detalhes bibliográficos
Autor principal: Targino, Renato Oliveira (author)
Formato: masterThesis
Idioma:por
Publicado em: 2011
Assuntos:
Texto completo:http://www.repositorio.ufc.br/handle/riufc/1186
País:Brasil
Oai:oai:www.repositorio.ufc.br:riufc/1186
Descrição
Resumo:In this work we study complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form Q4(c). We prove that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q4(c); c ≤ 0; whose Ricci curvature is bounded from below,is equal to zero. Futher, we study the connected minimal hypersurfaces M3 of a space form Q4(c) with constant Gauss-Kronecker curvature K. For the case c ≤ 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurface of Q4 with K constant. Examples of complete minimal hypersurfaces which are not totally geodesic in the Euclidean space R4 and the hiperbolic space H4(c) with vanishing Gauss-Kronecker curvature are also presented.